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A common problem is that of estimating a discrete probabil-
ity distribution, θ = {θ1, θ2, . . . , θk}, given a limited number of
samples drawn from that distribution, summarized by the count
vector n = {n1, n2, . . . , nk}, and a reasonable a priori best guess
for the distribution θ ≈ π = {π1, π2, . . . , πk}. (For a general in-
troduction, see Durbin et al. 1998.) This guess may simple be the
uniform probability, πi = 1/k, which amounts to asserting that,
as far as we know, all possible observations are equally likely. At
other times, we may know some some more detailed approxima-
tion to the distribution θ.

For example, in the present case we wish to estimate the prob-
abilities of substituting a pair of amino acid residues by another
residue pair, given the number of times that this substitution
has been observed in the training dataset. This probability is
hard to estimate reliably since the distribution is very large with
204 = 160, 000 dimensions. Moreover, many of the possible
observations occur very rarely. However, substitutions at differ-
ent sites are not strongly correlated, and therefore we may ap-
proximate the doublet substitution probabilities by a product of
single substitution probabilities. Since the dimensions of these
marginals are relatively small we can accurately estimate them
from the available data, and thereby construct a reliable and rea-
sonable initial guess for the full doublet substitution distribution.

In the common and conventional pseudocount approach, we
assume that the distribution π was estimated from A previous ob-
servations. These pseudocounts, αi = πiA, are then proportion-
ally averaged with the real observations (N =

∑
i ni) to provide

an estimate of θ;

θi =
αi + ni

A + N
. (1)

This prescription is intuitively appealing. When the total num-
ber of real counts is much less than the number of pseudocounts
(N � A) the prior dominates, and the estimated distribution is
determined by our initial guess, θ ≈ π. In the alternative limit
that the real observations greatly outnumber the pseudocounts
(N � A) the estimated distribution is given by the frequencies
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θi = ni/N . However, it is not immediately obvious how to se-
lect A, although many heuristics have been proposed, including
A = 1, A = k (Laplace), and A =

√
N (e.g. Lawrence et al.,

1993; Durbin et al., 1998; Nemenman et al., 2001). Essentially,
this total pseudocount parameter represents our confidence that
the initial guess θ ≈ π is accurate, since the larger the total pseu-
docount the more data is required to overcome this assumption.

Within a Bayesian approach we can avoid this indeterminacy
by admitting that, a priori, we do not know how confidant we are
that π approximates θ. The probability P (n|θ) of independently
sampling a particular set of observations, n, given the underlying
sampling probability, θ, follows the multinomial distribution, the
multivariate generalization of the binomial distribution;

M(n|θ) =
1

M(n)

k∏
i=1

θni
i , M(n) =

∏
i ni!

(
∑

i ni)!
. (2)

The prior probability of the sampling distribution P (θ) is typ-
ically modeled with a Dirichlet distribution,

D(θ|α) =
1

Z(α)

k∏
i=1

θ
(αi−1)
i , Z(α) =

∏
i Γ(αi)
Γ(A)

. (3)

where
∑

i θ = 1, αi > 0 and A =
∑

i αi. Note that the mean of
a Dirichlet is

E[θi] =
αi

A
. (4)

Therefore, we may fix the parameters of the Dirichlet prior by
equating our initial guess, π, with the mean prior distribution:
π = α/A. If we can fix the scale factor A, then we can combine
the prior and observations using Bayes’ theorem.

P (θ|n) =
P (n|θ)P (θ)

P (n)
. (5)

Because the multinomial and Dirichlet distributions are natu-
rally conjugate, the posterior distribution P (θ|n) is also Dirichlet.

P (θ|n) ∝ M(n|θ)D(θ|Aπ)
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∝
k∏

i=1

θ
(Aπi+ni−1)
i ,

= D(θ|Aπ + n) (6)

The last line follows because the product in the previous line is an
unnormalized Dirichlet with parameters (Aπ + n), yet the prob-
ability P (θ|n) must be correctly normalized.

Given multinomial sampling and a Dirichlet prior, the prob-
ability of the data is given by the under-appreciated multivari-
ant negative hypergeometric distribution (Johnson & Kotz, 1969;
Durbin et al., 1998, Eq. 11.23);

P (n) =
∫

dθ P (n|θ)P (θ),

=
∫

dθ M(n|θ)D(θ|Aπ),

=
1

Z(Aπ)
1

M(n)

∫
dθ

20∏
i=1

θ
(Aπi+ni−1)
i ,

=
Z(Aπ + n)
Z(Aπ)M(n)

≡ H′(n|Aπ + n). (7)

Again, the last line follows because the product in the previ-
ous line is an unnormalized Dirichlet with parameters (Aπ + n).
Therefore, the integral over θ must be equal to the corresponding
Dirichlet normalization constant, Z(Aπ + n). Note that, con-
fusingly, the negative hypergeometric distribution is sometimes
called the inverse hypergeometric, an entirely different distribu-
tion, and vice versa.

Since we do know a reasonable value for the scale factor A
we cannot use a simple Dirichlet prior. As an alternative, we
explicitly acknowledge our uncertainly about A by building this
indeterminacy into the prior itself. Rather than a single Dirichlet,
we use the Dirichlet mixture;

P (θ|π) =
∫ ∞

0

dA D(θ|Aπ)P (A). (8)

The distribution P (A) is a hyperprior, a prior distribution placed
upon a parameter of the Dirichlet prior. Following the same math-
ematics as Eqs. 5-7, we find that the posterior distribution is the
Dirichlet mixture

P (θ|n) =
∫ ∞

0

dA D(θ|Aπ + n)P (A|n) , (9)

where

P (A|n) =
P (A)H′(n|Aπ + n)∫∞

0
dA P (A)H′(n|Aπ + n)

. (10)

In principle, we have to select and parameterize a functional
form for the hyperprior, P (A). For example, an exponential dis-
tribution, P (A) = λ exp(−λA), with mean 1/λ, might be appro-
priate. Fortunately, we can often avoid selecting an explicit hy-
perprior. In practice, given sufficient data, the probability of that
data P (n|A) is a smooth, sharply peaked function of A. This is il-
lustrated in figure 1 using 107 observations of the 160,000 dimen-
sional doublet substitution probability, where the mean prior dis-
tribution is taken to be the product of singlet substitutions prob-
abilities. If the prior distribution of A is reasonable, and neither
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Figure 1: The likelihood of observations as a function of the scale
parameter A. With multinomial sampling and a Dirichlet prior
the likelihood of the data follows the negative hypergeometric
distribution, H ′(n|Aπ +n), where n is the count vector of obser-
vations, π is the mean prior estimate of the sampling distribution,
and A is a scale parameter (Eq. 7). Given a large number of ob-
servations (here, N =

∑
ni is about 107) the probability of the

data is a smooth and very sharply peaked function of the scale
parameter A.

very large nor very small over the range of interest, then the poste-
rior distribution P (A|n) will also be very strongly peaked. More-
over, the location of that peak will be almost totally independent
of the prior placed on A. In this limit the posterior Dirichlet mix-
ture (Eq. 9) reduces to the single component that maximizes the
probability of the data;

P (θ|n) ≈ D(θ|Aπ + n),
A = argmaxAP (A|n) ≈ argmaxAP (n|A),

P (n|A) = H′(n|Aπ + n). (11)

Here, argmaxxf(x) is the value of x that maximizes that function
f(x).

Given any function of θ, the average of the function across
the posterior distribution (the posterior mean estimate (PME) or
Bayes’ Estimate) minimizes the mean squared error of that esti-
mate. In particular, the posterior mean estimate of θ (Eq. 4) is

θPME
i =

Aπi + ni

A + N
. (12)

Taken altogether, our practice is to take the raw doublet sub-
stitution counts and construct a mean prior distribution π based
upon the approximation that substitutions on neighboring sites
are uncorrelated. We then find the scaling factor A that max-
imizes the negative hypergeometric probability H′(n|Aπ + n).
For our data the total number of observations N is around 107, for
which the optimal scale factor A was found to be about 106. The
posterior mean estimate of the doublet substitution distribution
is then used to construct the doublet substitution matrix. Code
for constructing doublet substitution matrices using this proce-
dure and for finding the optimal prior and posterior, given any set
of observations and π, a best guess for the true distribution θ, is
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available from our web site (http://compbio.berkeley.
edu), along with other code and data for this work. Our programs
make extensive use of the Open Sourced GNU Scientific Library
(GSL) (Gough, 2003; Matsumoto & Nishimura, 1998).
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